Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.316
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1340075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628549

RESUMO

Purpose: To determine the effects of EV-A71 (Enterovirus A71) infection on ocular surface and its mechanism. Methods: AG6 mice aged two to three weeks were randomly divided into control and EV-A71 infected groups. Slit-lamp observation, fluorescein staining, and phenol red thread test were used to assess symptoms of ocular surface at 4 dpi (days post infection). The pathological changes of cornea and lacrimal gland were observed by H&E staining, PAS staining, TUNEL assay, IHC staining and qRT-PCR. Corneas and lacrimal glands from mice were obtained and processed for RNA sequencing analysis. Newly diagnosed HFMD patients caused by EV-A71 were recruited and ensured they met the inclusion criteria. Ocular surface parameters (TMH and NIKBUT) were measured using the OCULUS Keratograph 5M. Tear samples were taken to examine Cxcl1 and IL-6 levels through the ELISA method. Results: Mice studies revealed that EV-A71 infection caused tear film instability, decreased tear secretions, decreased in lacrimal gland size, and distinct goblet cell loss. It also resulted in increased large vacuoles within acinar cells and structural damage in lacrimal gland. Apart from minor damage to the epidermis, there was no obvious inflammatory changes or apoptosis in the cornea. However, there were significant inflammatory injury and apoptosis in the lacrimal gland. RNA-seq analysis showed IL-17 and NF-κB signaling pathways were activated in the lacrimal glands of mice infected with EV-A71. In HFMD patients, the THM was in a low range and NITBUT was significantly shorter than the control group by Oculus Keratograph 5M. ELISA assay showed a higher tear Cxcl1 and IL-6 level in them. Conclusion: EV-A71 infection affected lacrimal gland structure and function and induced dry eye-like symptoms.


Assuntos
Síndromes do Olho Seco , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Aparelho Lacrimal , Humanos , Animais , Camundongos , Interleucina-6 , Síndromes do Olho Seco/etiologia
3.
Viruses ; 16(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543718

RESUMO

Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.


Assuntos
Desoxiadenosinas , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Chlorocebus aethiops , Lactente , Criança , Humanos , Pré-Escolar , Enterovirus Humano A/genética , Células Vero , Adenosina/farmacologia , Células CACO-2 , Replicação Viral , Infecções por Enterovirus/tratamento farmacológico , Antígenos Virais , Antivirais/farmacologia
4.
Hum Vaccin Immunother ; 20(1): 2330163, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38544389

RESUMO

The Enterovirus A71 (EV-A71) vaccine was introduced in China in December 2015 as a preventive measure against hand, foot, and mouth disease (HFMD) caused by EV-A71. However, the effectiveness of the vaccine (VE) in real-world settings needs to be evaluated. We conducted a test-negative case-control study to assess the effectiveness of EV-A71 vaccines in preventing EV-A71-associated HFMD. Children aged 6-71 months with HFMD were enrolled as participants. The case group comprised those who tested positive for EV-A71, while the control group comprised those who tested negative for EV-A71. To estimate VE, a logistic regression model was employed, adjusting for potential confounders including age, gender, and clinical severity. In total, 3223 children aged 6 to 71 months were included in the study, with 162 in the case group and 3061 in the control group. The proportion of children who received EV-A71 vaccination was significantly lower in the case group compared to the control group (p < .001). The overall VEadj was estimated to be 90.8%. The VEadj estimates for partially and fully vaccinated children were 90.1% and 90.9%, respectively. Stratified by age group, the VEadj estimates were 88.7% for 6 to 35-month-olds and 95.5% for 36 to 71-month-olds. Regarding disease severity, the VEadj estimates were 86.3% for mild cases and 100% for severe cases. Sensitivity analysis showed minimal changes in the VE point estimates, with most changing by no more than 1% point. Our study demonstrates a high level of vaccine effectiveness against EV-A71-HFMD, especially in severe cases. Active promotion of EV-A71 vaccination is an effective strategy in preventing EV-A71 infections.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Criança , Humanos , Doença de Mão, Pé e Boca/prevenção & controle , Estudos de Casos e Controles , Vacinas de Produtos Inativados , China/epidemiologia , Antígenos Virais
5.
Arch Virol ; 169(4): 73, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472498

RESUMO

Enterovirus 71 (EV71) is a neurotropic enterovirus associated with hand, foot, and mouth disease (HFMD) fatalities. In this study, we investigated the impact of EV71 on plasmacytoid dendritic cells (pDCs) and CD4+ T cells. The results showed that pDCs were promptly activated, secreting interferon (IFN)-α and inducing CD4+ T cell proliferation and differentiation during early EV71 infection. This initiated adaptive immune responses and promoted proinflammatory cytokine production by CD4+ T cells. Over time, viral nucleic acids and proteins were synthesized in pDCs and CD4+ T cells. Concurrently, the cholinergic anti-inflammatory pathway (CAP) was activated, exhibiting an anti-inflammatory role. With constant viral stimulation, pDCs and CD4+ T cells showed reduced differentiation and cytokine secretion. Defects in pDCs were identified as a key factor in CD4+ T cell tolerance. CAP had a more significant regulatory effect on CD4+ T cells than on pDCs and was capable of inhibiting inflammation in these cells.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Humanos , Neuroimunomodulação , Regulação para Cima , Interferon-alfa/metabolismo , Diferenciação Celular , Infecções por Enterovirus/metabolismo , Linfócitos T CD4-Positivos , Células Dendríticas
6.
Vaccine ; 42(9): 2317-2325, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38433065

RESUMO

BACKGROUND: Vaccination has been proven effective against infection with enterovirus A71 (EV-A71) in clinical trials, but vaccine effectiveness in real-world situations remains incompletely understood. Furthermore, it is not clear whether previous vaccination will result in symptom attenuation among post-vaccinated cases. METHODS: Based on long-term data extracted from the only designed referral hospital for infectious diseases, we used a test-negative case-control design and multivariate logistic regression models to analyze the effectiveness of EV-A71 vaccine against hand, foot and mouth disease (HFMD). And then, generalized linear regression models were used to evaluate the associations between prior vaccination and disease profiles. RESULTS: We selected 4883 inpatients for vaccine efficacy estimations and 2188 inpatients for disease profile comparisons. Vaccine effectiveness against EV-A71-induced HFMD for complete vaccination was 63.4 % and 51.7 % for partial vaccination. The vaccine effectiveness was higher among cases received the first dose within 12 months. No protection was observed against coxsackievirus (CV) A6-, CV-A10- or CV-A16-associated HFMD among children regardless of vaccination status. Completely vaccinated cases had shorter hospital stay and disease course compared to unvaccinated cases (P < 0.05). CONCLUSIONS: These findings reiterate the need to continue the development of a multivalent vaccine or combined vaccines, and have implications for introducing optimized vaccination strategies.


Assuntos
Doenças Transmissíveis , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Vacinas Virais , Criança , Humanos , Doença de Mão, Pé e Boca/prevenção & controle , Infecções por Enterovirus/prevenção & controle , Vacinação , Anticorpos Antivirais , Antígenos Virais , Vacinas Combinadas , China
7.
Microbiol Spectr ; 12(4): e0333223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441464

RESUMO

Enterovirus A89 (EV-A89) is an unconventional strain belonging to the Enterovirus A species. Limited research has been conducted on EV-A89, leaving its biological and pathogenic properties unclear. Developing reverse genetic tools for EV-A89 would help to unravel its infection mechanisms and aid in the development of vaccines and anti-viral drugs. In this study, an infectious clone for EV-A89 was successfully constructed and recombinant enterovirus A89 (rEV-A89) was generated. The rEV-A89 exhibited similar characteristics such as growth curve, plaque morphology, and dsRNA expression with parental strain. Four amino acid substitutions were identified in the EV-A89 capsid, which were found to enhance viral infection. Mechanistic studies revealed that these substitutions increased the virus's cell-binding ability. Establishing reverse genetic tools for EV-A89 will significantly contribute to understanding viral infection and developing anti-viral strategies.IMPORTANCEEnterovirus A species contain many human pathogens and have been classified into conventional cluster and unconventional cluster. Most of the research focuses on various conventional members, while understanding of the life cycle and infection characteristics of unconventional viruses is still very limited. In our study, we constructed the infectious cDNA clone and single-round infectious particles for the unconventional EV-A89, allowing us to investigate the biological properties of recombinant viruses. Moreover, we identified key amino acids residues that facilitate EV-A89 infection and elucidate their roles in enhancing viral binding to host cells. The establishment of the reverse genetics system will greatly facilitate future study on the life cycle of EV-A89 and contribute to the development of prophylactic vaccines and anti-viral drugs.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Vacinas , Humanos , Enterovirus/genética , Enterovirus Humano A/genética , Antígenos Virais , Substituição de Aminoácidos , Células Clonais , Antivirais/farmacologia
8.
Drug Des Devel Ther ; 18: 651-665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450095

RESUMO

Purpose: This study aims to investigate the in vitro antiviral effects of the aqueous solution of Changyanning (CYN) tablets on Enterovirus 71 (EV71), and to analyze its active components. Methods: The in vitro anti-EV71 effects of CYN solution and its herbal ingredients were assessed by testing the relative viral RNA (vRNA) expression level and the cell viability rates. Material basis analysis was performed using HPLC-Q-TOF-MS/MS detection. Potential targets and active components were identified by network pharmacology and molecular docking. The screened components were verified by in vitro antiviral experiments. Results: CYN solution exerted anti-EV71 activities as the vRNA is markedly reduced after treatment, with a half maximal inhibitory concentration (IC50) of 996.85 µg/mL. Of its five herbal ingredients, aqueous extract of Mosla chinensis (AEMC) and leaves of Liquidambar formosana Hance (AELLF) significantly inhibited the intracellular replication of EV71, and the IC50 was tested as 202.57 µg/mL and 174.77 µg/mL, respectively. Based on HPLC-Q-TOF-MS/MS results, as well as the comparison with the material basis of CYN solution, a total of 44 components were identified from AEMC and AELLF. Through network pharmacology, AKT1, ALB, and SRC were identified as core targets. Molecular docking performed between core targets and the components indicated that 21 components may have anti-EV71 effects. Of these, nine were selected for in vitro pharmacodynamic verification, and only rosmarinic acid manifested in vitro anti-EV71 activity, with an IC50 of 11.90 µg/mL. Moreover, rosmarinic acid can stably bind with three core targets by forming hydrogen bonds. Conclusion: CYN solution has inhibitory effects on EV71 replication in vitro, and its active component was identified as rosmarinic acid. Our study provides a new approach for screening and confirmation of the effective components in Chinese herbal preparation.


Assuntos
Enterovirus Humano A , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , 60556 , Comprimidos , Antivirais/farmacologia
9.
Antiviral Res ; 224: 105842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417531

RESUMO

Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro. We identified several novel, synergistic two-drug and three-drug combinations that demonstrated significant inhibition of enterovirus infections in vitro. Specifically, the triple-drug combination of pleconaril, rupintrivir, and remdesivir exhibited remarkable efficacy against echovirus (EV) 1, EV6, EV11, and coxsackievirus (CV) B5, in human lung epithelial A549 cells. This combination surpassed the effectiveness of single-agent or dual-drug treatments, as evidenced by its ability to protect A549 cells from EV1-induced cytotoxicity across seven passages. Additionally, this triple-drug cocktail showed potent antiviral activity against EV-A71 in human intestinal organoids. Thus, our findings highlight the therapeutic potential of the pleconaril-rupintrivir-remdesivir combination as a broad-spectrum treatment option against a range of enterovirus infections. The study also paves the way towards development of strategic antiviral drug combinations with virus family coverage and high-resistance barriers.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Isoxazóis , Oxidiazóis , Oxazóis , Fenilalanina/análogos & derivados , Pirrolidinonas , Valina/análogos & derivados , Animais , Humanos , Infecções por Enterovirus/tratamento farmacológico , Enterovirus Humano B , Antivirais/farmacologia , Antivirais/uso terapêutico , Combinação de Medicamentos
10.
BMC Infect Dis ; 24(1): 205, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360603

RESUMO

Hand foot and mouth disease (HFMD) is caused by a variety of enteroviruses, and occurs in large outbreaks in which a small proportion of children deteriorate rapidly with cardiopulmonary failure. Determining which children are likely to deteriorate is difficult and health systems may become overloaded during outbreaks as many children require hospitalization for monitoring. Heart rate variability (HRV) may help distinguish those with more severe diseases but requires simple scalable methods to collect ECG data.We carried out a prospective observational study to examine the feasibility of using wearable devices to measure HRV in 142 children admitted with HFMD at a children's hospital in Vietnam. ECG data were collected in all children. HRV indices calculated were lower in those with enterovirus A71 associated HFMD compared to those with other viral pathogens.HRV analysis collected from wearable devices is feasible in a low and middle income country (LMIC) and may help classify disease severity in HFMD.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Criança , Humanos , Lactente , Doença de Mão, Pé e Boca/diagnóstico , Frequência Cardíaca , Estudos de Viabilidade , China/epidemiologia
11.
Sci Adv ; 10(7): eadg3060, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363831

RESUMO

Selective pressures on viruses provide opportunities to establish target site specificity and mechanisms of antivirals. Enterovirus (EV)-A71 with resistant mutations in the stem loop (SL) II internal ribosome entry site (IRES) (SLIIresist) were selected at low doses of the antiviral dimethylamiloride (DMA)-135. The EV-A71 mutants were resistant to DMA-135 at concentrations that inhibit replication of wild-type virus. EV-A71 IRES structures harboring resistant mutations induced efficient expression of Luciferase messenger RNA in the presence of noncytotoxic doses of DMA-135. Nuclear magnetic resonance indicates that the mutations change the structure of SLII at the binding site of DMA-135 and at the surface recognized by the host protein AU-rich element/poly(U)-binding/degradation factor 1 (AUF1). Biophysical studies of complexes formed between AUF1, DMA-135, and either SLII or SLIIresist show that DMA-135 stabilizes a ternary complex with AUF1-SLII but not AUF1-SLIIresist. This work demonstrates how viral evolution elucidates the (DMA-135)-RNA binding site specificity in cells and provides insights into the viral pathways inhibited by the antiviral.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus/genética , Enterovirus/metabolismo , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/genética , Infecções por Enterovirus/metabolismo , Replicação Viral , Antígenos Virais , RNA Viral/metabolismo , Antivirais/farmacologia
12.
PLoS Pathog ; 20(2): e1012022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359079

RESUMO

Enterovirus A71 (EV-A71) infection involves a variety of receptors. Among them, two transmembrane protein receptors have been investigated in detail and shown to be critical for infection: P-selectin glycoprotein ligand-1 (PSGL-1) in lymphocytes (Jurkat cells), and scavenger receptor class B member 2 (SCARB2) in rhabdomyosarcoma (RD) cells. PSGL-1 and SCARB2 have been reported to be expressed on the surface of Jurkat and RD cells, respectively. In the work reported here, we investigated the roles of PSGL-1 and SCARB2 in the process of EV-A71 entry. We first examined the expression of SCARB2 in Jurkat cells, and detected it within the cytoplasm, but not on the cell surface. Further, using PSGL-1 and SCARB2 knockout cells, we found that although both PSGL-1 and SCARB2 are essential for virus infection of Jurkat cells, virus attachment to these cells requires only PSGL-1. These results led us to evaluate the cell surface expression and the roles of SCARB2 in other EV-A71-susceptible cell lines. Surprisingly, in contrast to the results of previous studies, we found that SCARB2 is absent from the surface of RD cells and other susceptible cell lines we examined, and that although SCARB2 is essential for infection of these cells, it is dispensable for virus attachment. These results indicate that a receptor other than SCARB2 is responsible for virus attachment to the cell and probably for internalization of virions, not only in Jurkat cells but also in RD cells and other EV-A71-susceptible cells. SCARB2 is highly concentrated in lysosomes and late endosomes, where it is likely to trigger acid-dependent uncoating of virions, the critical final step of the entry process. Our results suggest that the essential interactions between EV-A71 and SCARB2 occur, not at the cell surface, but within the cell.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Membrana Celular/metabolismo , Linhagem Celular , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Glicoproteínas de Membrana Associadas ao Lisossomo/genética
13.
Anal Bioanal Chem ; 416(8): 1971-1982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358534

RESUMO

Hand, foot, and mouth disease (HFMD) caused by various enteroviruses is a major public health concern globally. Human enterovirus 71(EVA71), coxsackievirus A16 (CVA16), coxsackievirus A6 (CVA6), and coxsackievirus A10 (CVA10) are four major enteroviruses responsible for HFMD. Rapid, accurate, and specific point-of-care (POC) detection of the four enteroviruses is crucial for the prevention and control of HFMD. Here, we developed two multiplex high-fidelity DNA polymerase loop-mediated isothermal amplification (mHiFi-LAMP) assays for simultaneous detection of EVA71, CVA16, CVA6, and CVA10. The assays have good specificity and exhibit high sensitivity, with limits of detection (LOD) of 11.2, 49.6, 11.4, and 20.5 copies per 25 µL reaction for EVA71, CVA16, CVA6, and CVA10, respectively. The mHiFi-LAMP assays showed an excellent clinical performance (sensitivity 100.0%, specificity 83.3%, n = 47) when compared with four singleplex RT-qPCR assays (sensitivity 93.1%, specificity 100%). In particular, the HiFi-LAMP assays exhibited better performance (sensitivity 100.0%, specificity 100%) for CVA16 and CVA6 than the RT-qPCR assays (sensitivity 75.0-92.3%, specificity 100%). Furthermore, the mHiFi-LAMP assays detected all clinical samples positive for the four enteroviruses within 30 min, obviously shorter than about 1-1.5 h by the RT-qPCR assays. The new mHiFi-LAMP assays can be used as a robust point-of-care testing (POCT) tool to facilitate surveillance of HFMD at rural and remote communities and resource-limited settings.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Técnicas de Amplificação de Ácido Nucleico , Humanos , Doença de Mão, Pé e Boca/diagnóstico , Enterovirus/genética , Enterovirus Humano A/genética , Técnicas de Diagnóstico Molecular , China/epidemiologia , Filogenia
14.
J Virol ; 98(2): e0135823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38226810

RESUMO

Hand, foot, and mouth disease (HFMD) is caused by more than 20 pathogenic enteroviruses belonging to the Picornaviridae family and Enterovirus genus. Since the introduction of the enterovirus-71 (EV71) vaccine in 2016, the number of HFMD cases caused by EV71 has decreased. However, cases of infections caused by other enteroviruses, such as coxsackievirus A6 (CA6) and coxsackievirus A10, have been increasing accordingly. In this study, we used a clinical isolate of CA6 to establish an intragastric infection mouse model using 7-day-old mice to mimic the natural transmission route, by which we investigated the differential gene expression profiles associated with virus infection and pathogenicity. After intragastric infection, mice exhibited hind limb paralysis symptoms and weight loss, similar to those reported for EV71 infection in mice. The skeletal muscle was identified as the main site of virus replication, with a peak viral load reaching 2.31 × 107 copies/mg at 5 dpi and increased infiltration of inflammatory cells. RNA sequencing analysis identified differentially expressed genes (DEGs) after CA6 infection. DEGs in the blood, muscle, brain, spleen, and thymus were predominantly enriched in immune system responses, including pathways such as Toll-like receptor signaling and PI3K-Akt signaling. Our study has unveiled the genes involved in the host immune response during CA6 infection, thereby enhancing our comprehension of the pathological mechanism of HFMD.IMPORTANCEThis study holds great significance for the field of hand, foot, and mouth disease (HFMD). It not only delves into the disease's etiology, transmission pathways, and severe complications but also establishes a novel mouse model that mimics the natural coxsackievirus A6 infection process, providing a pivotal platform to delve deeper into virus replication and pathogenic mechanisms. Additionally, utilizing RNA-seq technology, it unveils the dynamic gene expression changes during infection, offering valuable leads for identifying novel therapeutic drug targets. This research has the potential to enhance our understanding of HFMD, offering fresh perspectives for disease prevention and treatment and positively impacting children's health worldwide.


Assuntos
Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Criança , Humanos , Camundongos , Anticorpos Antivirais , Modelos Animais de Doenças , Enterovirus/patogenicidade , Enterovirus/fisiologia , Enterovirus Humano A , Infecções por Enterovirus/patologia , Infecções por Enterovirus/virologia , Expressão Gênica , Doença de Mão, Pé e Boca/genética , Fosfatidilinositol 3-Quinases , Virulência
15.
J Virol ; 98(1): e0155823, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38174926

RESUMO

Enterovirus A71 (EV-A71) can induce severe neurological complications and even fatal encephalitis in children, and it has caused several large outbreaks in Taiwan since 1998. We previously generated VP1 codon-deoptimized (VP1-CD) reverse genetics (rg) EV-A71 viruses (rgEV-A71s) that harbor a high-fidelity (HF) 3D polymerase. These VP1-CD-HF rgEV-A71s showed lower replication kinetics in vitro and decreased virulence in an Institute of Cancer Research (ICR) mouse model of EV-A71 infection, while still retaining their antigenicity in comparison to the wild-type virus. In this study, we aimed to further investigate the humoral and cellular immune responses elicited by VP1-CD-HF rgEV-A71s to assess the potential efficacy of these EV-A71 vaccine candidates. Following intraperitoneal (i.p.) injection of VP1-CD-HF rgEV-A71s in mice, we observed a robust induction of EV-A71-specific neutralizing IgG antibodies in the antisera after 21 days. Splenocytes isolated from VP1-CD-HF rgEV-A71s-immunized mice exhibited enhanced proliferative activities and cytokine production (IL-2, IFN-γ, IL-4, IL-6, and TNF-α) upon re-stimulation with VP1-CD-HF rgEV-A71, as compared to control mice treated with adjuvant only. Importantly, administration of antisera from VP1-CD-HF rgEV-A71s-immunized mice protected against lethal EV-A71 challenge in neonatal mice. These findings highlight that our generated VP1-CD-HF rgEV-A71 viruses are capable of inducing both cellular and humoral immune responses, supporting their potential as next-generation EV-A71 vaccines for combating EV-A71 infection.IMPORTANCEEV-A71 can cause severe neurological diseases and cause death in young children. Here, we report the development of synthetic rgEV-A71s with the combination of codon deoptimization and high-fidelity (HF) substitutions that generate genetically stable reverse genetics (rg) viruses as potential attenuated vaccine candidates. Our work provides insight into the development of low-virulence candidate vaccines through a series of viral genetic editing for maintaining antigenicity and genome stability and suggests a strategy for the development of an innovative next-generation vaccine against EV-A71.


Assuntos
Proteínas do Capsídeo , Enterovirus Humano A , Infecções por Enterovirus , RNA Polimerase Dependente de RNA , Animais , Camundongos , Anticorpos Antivirais/imunologia , Códon , Enterovirus Humano A/genética , Infecções por Enterovirus/imunologia , Vacinas Atenuadas , Proteínas do Capsídeo/genética , Imunidade Humoral , Imunidade Celular , Anticorpos Neutralizantes/imunologia , Vacinas Virais , Camundongos Endogâmicos ICR , Camundongos Endogâmicos BALB C , RNA Polimerase Dependente de RNA/genética
16.
Emerg Microbes Infect ; 13(1): 2307514, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38240287

RESUMO

Enterovirus A71 (EV-A71) is the main pathogen causing hand, foot and mouth disease (HFMD) in children and occasionally associated with neurological diseases such as aseptic meningitis, brainstem encephalitis (BE) and acute flaccid paralysis. We report here that cellular pseudokinase tribbles 3 (TRIB3) facilitates the infection of EV-A71 via dual mechanisms. In one hand, TRIB3 maintains the metabolic stability of scavenger receptor class B member 2 (SCARB2), the bona fide receptor of EV-A71, to enhance the infectious entry and spreading of the virus. On the other hand, TRIB3 facilitates the replication of EV-A71 RNA in a SCARB2-independent manner. The critical role of TRIB3 in EV-A71 infection and pathogenesis was further demonstrated in vivo in mice. In comparison to wild-type C57BL/6 mice, EV-A71 infection in TRIB3 knockdown mice (Trib3+/-) resulted in significantly lower viral loads in muscular tissues and reduced lethality and severity of clinical scores and tissue pathology. In addition, TRIB3 also promoted the replication of coxsackievirus B3 (CVB3) and coxsackievirus A16 (CVA16) in vitro. In conclusion, our results suggest that TRIB3 is one of key host cellular proteins required for the infection and pathogenesis of EV-A71 and some other human enteroviruses and may thus be a potential therapeutic target for combating the infection of those viruses.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Criança , Humanos , Camundongos , Enterovirus/genética , Enterovirus Humano A/genética , Infecções por Enterovirus/complicações , Doença de Mão, Pé e Boca/complicações , Camundongos Endogâmicos C57BL
17.
J Virol ; 98(2): e0174923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38189249

RESUMO

Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIß (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIß (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Acetiltransferases N-Terminal , Fosfotransferases (Aceptor do Grupo Álcool) , Criança , Pré-Escolar , Humanos , 1-Fosfatidilinositol 4-Quinase/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antivirais , Coenzima A/metabolismo , Infecções por Coxsackievirus , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Proteínas de Membrana/metabolismo , Acetiltransferases N-Terminal/metabolismo , Biogênese de Organelas , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Replicação Viral/fisiologia
18.
PLoS Pathog ; 20(1): e1011967, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271479

RESUMO

Given the serious neurological complications and deaths associated with enterovirus 71 (EV71) infection, there is an urgent need to develop effective antivirals against this viral infection. In this study, we demonstrated that two Cathelicidin-derived peptides, LL-18 and FF-18 were more potent against EV71 infection than the parent peptide LL-37, which is the mature and processed form of Cathelicidin. These peptides could directly bind to the EV71 virus particles, but not to coxsackievirus, indicative of their high specificity. The binding of peptides with the virus surface occupied the viral canyon region in a way that could block virus-receptor interactions and inhibit viral uncoating. In addition, these peptide analogues could also relieve the deleterious effect of EV71 infection in vivo. Therefore, Cathelicidin-derived peptides might be excellent candidates for further development of antivirals to treat EV71 infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Humanos , Catelicidinas/farmacologia , Internalização do Vírus , Antivirais/metabolismo
19.
J Biochem Mol Toxicol ; 38(1): e23620, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229319

RESUMO

Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD) in children. Nowadays, there are still no effective antiviral drugs for EV71 infection. High mobility group box 1 (HMGB1) is reported to be highly expressed in HFMD patients. However, the role and underlying mechanism of HMGB1 in EV71-associated HFMD are still unclear. HMGB1 expression was detected using RT-qPCR and western blot assays. Loss- and gain-function experiments were performed to evaluate the effects of HMGB1 on EV71-infected cells. The virus titer was examined by TCID50. CCK-8 and flow cytometry assays were applied to detect the cell viability and cell cycle. Oxidative stress was determined by relative commercial kits. HMGB1 level was elevated in the serum of EV71-infected patients with HFMD and EV71-induced RD cells. EV71 infection induced the transfer of HMGB1 from the nucleus into the cytoplasm. HMGB1 knockdown inhibited virus replication, viral protein (VP1) expression and promoted antiviral factor expression. In addition, the inhibition of HMGB1 improved cell viability, protected against S phase arrest, and inhibited EV71-induced cell injury and oxidative stress, whereas HMGB1 overexpression showed the opposite effects. In terms of mechanism, HMGB1 overexpression activated the TLR4/NF-κB/NLRP3 signaling pathway and promoted cell pyroptosis. The inhibition of TLR4 and NF-κB reversed the effects of HMGB1 overexpression on virus replication, oxidative stress, and pyroptosis. In conclusion, HMGB1 knockdown inhibits EV71 replication and attenuates pyroptosis through TLR4/NF-κB/NLRP3 axis.


Assuntos
Enterovirus Humano A , Proteína HMGB1 , Piroptose , Replicação Viral , Humanos , Enterovirus Humano A/fisiologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/genética
20.
Viruses ; 16(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257835

RESUMO

More than 100 types of non-polio enteroviruses (NPEVs) are ubiquitous in the human population and cause a variety of symptoms ranging from very mild to meningitis and acute flaccid paralysis (AFP). Much of the information regarding diverse pathogenic properties of NPEVs comes from the surveillance of poliovirus, which also yields NPEV. The analysis of 265 NPEV isolations from 10,433 AFP cases over 24 years of surveillance and more than 2500 NPEV findings in patients without severe neurological lesions suggests that types EV-A71, E13, and E25 were significantly associated with AFP. EV-A71 was also significantly more common among AFP patients who had fever at the onset and residual paralysis compared to all AFP cases. In addition, a significant disparity was noticed between types that were common in humans (CV-A2, CVA9, EV-A71, E9, and E30) or in sewage (CVA7, E3, E7, E11, E12, and E19). Therefore, there is significant evidence of non-polio viruses being implicated in severe neurological lesions, but further multicenter studies using uniform methodology are needed for a definitive conclusion.


Assuntos
Viroses do Sistema Nervoso Central , Enterovirus Humano A , Infecções por Enterovirus , Mielite , Doenças Neuromusculares , Poliomielite , Poliovirus , Humanos , Laboratórios , alfa-Fetoproteínas , Poliomielite/epidemiologia , Infecções por Enterovirus/epidemiologia , Federação Russa , Antígenos Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...